On Improving the Execution of Distributed CnC Programs

Yuhan Peng1, Martin Kong1, Louis-Noel Pouchet2, Vivek Sarkar1

1Department of Computer Science
Rice University

2Department of Computer Science
Colorado State University

CNC-2016 Workshop, September 2016
Concurrent Collections (CnC)

- Run-time and data-flow model for parallel programming.
- No direct specification of parallel operations.
 - The user specifies the semantics with data and control dependencies.
 - The runtime decides the schedule of parallel tasks.
- Applicable on both shared and distributed memory.
 - Can reach performance comparable to OpenMP/MPI applications.
Data-Flow Graph Language (DFGL)

- Intermediate graph representation for macro dataflow programs.
- Emphasizes the data dependencies between tasks.
- User-friendly, expressive language.
- DFGL provides great opportunities for performing high-level optimizations
 - Optimizations can be done through graph and loop transformations.
 - Especially good for polyhedral optimizations when program exhibits regularity.
Data-Flow Graph Language (DFGL)

- Automatic code generation tools can transform DFGL into CnC code for being executed.
- DFGL framework.¹

PIPES

- Programming language and compiler derived from DFGL.
 - Input: DFGL with producer and consumer relations, with other language abstractions.
 - Output: Intel CnC C++ compilable program.
- Concentrates on virtual topologies and task mappings.
- Automatically applying optimization transformations such as task coarsening and coalescing.
- Goal: better supporting task-based programming for shared and distributed memory.
PIPES

- Framework of PIPES.²
 - Great support for adding new optimization pass in PIPES core.

Motivation

- Managing and controlling the runtime overhead is crucial.
- In practice, such overhead depends on:
 - The total number of tasks created.
 - The number of tasks in flight at a given time point.
 - The total number of input dependencies.
Motivation

- Johnson 3D matrix multiply algorithm: our motivating example.
 - Introduced by Ramesh C. Agarwal et al. in 1995.
 - Parallelizable divide-and-conquer approach.
- To compute the product of $A * B$, Johnson 3D goes through two steps:
 - MMC: Divide A and B into small matrix pieces, and multiply the small matrix pieces in parallel.
 - MMR: Reduction to sum up the results of small matrix pieces.
Motivation

- We start by dissecting the program execution time of the Johnson 3D algorithm.
 - We tested the algorithm across different tile sizes.
 - We tested the algorithm across different number of nodes and task mappings.
- The program overhead is a non-negligible portion of the total time.
 - In distributed Johnson 3D algorithm, the overhead can take between 2% and 50% of the total execution time.
Motivation

- The overhead of the execution of Johnson 3D on different number of processors.
 - We use 1-8 nodes where each node has 12 processors.
 - More processors, larger overhead proportion.
 - The overhead grows superlinearly.
Our Approach

- Our goal: minimize the run-time overhead.
- We proposed two transformation techniques:
 - Dependency reduction.
 - Dynamic prescription.
Dependency Reduction

- Objective: minimizing the number of tasks and/or dependencies.
- Avoids needless polling of satisfied dependencies.
 - Depending on the runtime scheduler.
- Improves the program’s progress.
 - Reduce the critical path length.
 - Minimize the number of task instances and block instances.
 - The processors will have fewer tasks to handle, and fewer dependencies to query.
Dependency Reduction

- The user may specify a reduction factor R.
- Then we transform the dataflow graph, so that
 - The semantic of the input DFGL does not change.
 - Minimize the total number of dependencies.
 - Essentially contracts one dimension by a factor of R.
 - If $R = 1$, no change.
 - If $R = 2$, every two instances are fused. i.e. $N / 2$ instances left.
 - If $R = N$, all instances are fused. i.e. dimension collapses.
Dependency Reduction

- The dependency diagram of the original Johnson 3D algorithm.
Dependency Reduction

- The dependency diagram of the Johnson 3D algorithm after dependency reduction with $R = 2$.

[Diagram of dependency reduction showing nodes labeled as env, D[i][j][0], D[i][j][1], D[i][j][2], D[i][j][N/2], A[i][j][0], A[i][j][1], A[i][j][2], A[i][j][3], B[i][0][j], B[i][1][j], B[i][2][j], B[i][3][j], C[i][j][0], C[i][j][1], C[i][j][2], C[i][j][3], MMC, MMR, with arrows connecting these nodes.]
Dependency Reduction

- The dependency diagram of the Johnson 3D algorithm after dependency reduction with $R = N$.
Dependency Reduction

- Related work: OpenMP chunk_size.
 - Merge multiple loop bodies into one serial task, before being allocated to a thread.
 - Increase the work’s granularity.
 - Improves program’s scalability.

- The OpenMP chunk_size is similar to the reduction factor R.

- Difference between OpenMP chunk_size and PIPES dependency reduction.
 - OpenMP only performs data parallelism.
 - PIPES dependency reduction can support task parallelism.
 - PIPES dependency reduction can support the case when $R = N$, i.e. collapsing the entire dimension. Where OpenMP chunk_size must be a constant.
 - PIPES dependency reduction also removes intermediate results.
Dynamic Prescription

- Minimizes the number of tasks in flight by enforcing a dynamic prescription schedule, also known as creation and spawning schedule.
 - Determine when tasks are created and spawned.
 - Minimize the number of waiting tasks.
- Narrowing down the run-times scheduling options.
- Potentially improving the program’s locality.
- Similarly, the user may specify a prescription factor K.
 - The size of the task set of each spawn.
Dynamic Prescription

- Using the MMC in Johnson 3D as an example.
- Original version (K=N):
 - `env::MMC(i,j,k) 0 \leq i, j, k \leq n`
Dynamic Prescription

- Dynamic Prescription (K=1):
 - env::MMC(i,j,0) 0 ≤ i, j ≤ n
 - MMC(i,j,k)::MMC(i,j,k+1) 0 ≤ i, j ≤ n, 0 ≤ k ≤ n-1
Dynamic Prescription

- Dynamic Prescription (K=2):
 - env::MMC(i,j,0), MMC(i,j,1) 0 ≤ i, j ≤ n
 - MMC(i,j,k)::MMC(i,j,k+1), MMC(i,j,k+2) 0 ≤ i, j ≤ n, 0 ≤ k ≤ n - 2, k mod 2 = 1
Dynamic Prescription

- Dynamic Prescription (K=4):
 - env::MMC(i,j,0), MMC(i,j,1), MMC(i,j,2), MMC(i,j,3) \(0 \leq i, j \leq n\)
 - MMC(i,j,k)::MMC(i,j,k+1), MMC(i,j,k+2), MMC(i,j,k+3), MMC(i,j,k+4) \(0 \leq i, j \leq n, 0 \leq k \leq n - 4, k \mod 4 = 3\)
Dynamic Prescription

- Related work: cilk_for.
 - cilk_for can divide the loop into chunks.
 - Grain size: the maximum number of iterations in each chunk.
 - `#pragma cilk grainsize = expression`
- Grain size is similar to the prescription factor K.
- Difference between cilk_for and PIPES dynamic prescription.
 - cilk_for only performs data parallelism.
 - PIPES dynamic prescription can support task parallelism.
 - PIPES dynamic prescription can support prescription between different kernels.
Complexity Analysis

- No dependency reduction on MMR.
- Dynamic prescription on MMC. ($K = 1, 2, 4$)

<table>
<thead>
<tr>
<th></th>
<th>Original</th>
<th>K = 1</th>
<th>K = 2</th>
<th>K = 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>env::MMC</td>
<td>N^3</td>
<td>N^2</td>
<td>$2N^2$</td>
<td>$4N^2$</td>
</tr>
<tr>
<td>env::MMR</td>
<td>N^3</td>
<td>N^3</td>
<td>N^3</td>
<td>N^3</td>
</tr>
<tr>
<td>MMC::MMC</td>
<td>0</td>
<td>$N^3 - N^2$</td>
<td>$N^3 - 2N^2$</td>
<td>$N^3 - 4N^2$</td>
</tr>
<tr>
<td>MMC::MMR</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MMR::MMR</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Theoretical CPL</td>
<td>$N + 1$</td>
<td>$N + 1$</td>
<td>$N + 1$</td>
<td>$N + 1$</td>
</tr>
</tbody>
</table>
Complexity Analysis

- Dependency reduction on MMR. ($R = N$)
- Dynamic prescription on MMC. ($K = 1, 2, 4$)

<table>
<thead>
<tr>
<th></th>
<th>Original</th>
<th>$K = 1$</th>
<th>$K = 2$</th>
<th>$K = 4$</th>
</tr>
</thead>
<tbody>
<tr>
<td>env::MMC</td>
<td>N^3</td>
<td>N^2</td>
<td>$2N^2$</td>
<td>$4N^2$</td>
</tr>
<tr>
<td>env::MMR</td>
<td>N^2</td>
<td>N^2</td>
<td>N^2</td>
<td>N^2</td>
</tr>
<tr>
<td>MMC::MMC</td>
<td>0</td>
<td>$N^3 - N^2$</td>
<td>$N^3 - 2N^2$</td>
<td>$N^3 - 4N^2$</td>
</tr>
<tr>
<td>MMC::MMR</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MMR::MMR</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Theoretical CPL</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>
Experimental Setup

- All experiments were performed on Davinci Cluster at Rice University.
- The following table shows the detailed configuration.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nodes</td>
<td>1-8</td>
</tr>
<tr>
<td>Processor</td>
<td>Intel Xeon X5660 @ 2.80 GHz</td>
</tr>
<tr>
<td>Sockets per node</td>
<td>2</td>
</tr>
<tr>
<td>Cores per socket</td>
<td>6</td>
</tr>
<tr>
<td>InfiniBand QDR bandwidth</td>
<td>40 GB/s</td>
</tr>
<tr>
<td>L1 Cache</td>
<td>32 KB per core</td>
</tr>
<tr>
<td>L2 Cache</td>
<td>256 KB per core</td>
</tr>
<tr>
<td>L3 Cache</td>
<td>12 MB per socket</td>
</tr>
<tr>
<td>CnC</td>
<td>1.01</td>
</tr>
<tr>
<td>MPI run-time</td>
<td>Intel MPI 5.0</td>
</tr>
<tr>
<td>Compiler</td>
<td>Intel ICPC 13</td>
</tr>
<tr>
<td>Slurm</td>
<td>2.6.5</td>
</tr>
</tbody>
</table>
Experimental Setup

- Matrix Size: 8000 * 8000.
- 1, 2, 4, 8 nodes * 12 processors per node
- Tile Size: 400, 500, 800, 1000, 1600, 2000.
- All transformations were manually implemented.
- CnC tuners were used.
 - Dependency consumer.
 - computed_on
 - consumed_on
Performance Result

- We applied our proposed transformations on the Johnson 3D algorithm.
 - Dependency reduction on MMR (R = N)
 - Dynamic prescription on MMC (K = 1, 2, 4)
 - Dynamic prescription on both MMC and MMR (K = 1, 2, 4)
 - Adding MMC(i,j,k)::MMR(i,j,k) 0 ≤ i, j, k ≤ n
 - Dynamic reduction (K = 1, 2, 4)
 - Dependency reduction on MMR (R = N), plus dynamic prescription on MMC (K = 1, 2, 4)

- We obtained 30% speedup when combining the proposed transformations comparing to the base version.
Performance Result

- Dependency reduction on MMR ($R = N$)
- Dynamic prescription on MMC ($K = 1, 2, 4$)
Performance Result

- Dynamic prescription on both MMC and MMR ($K = 1, 2, 4$)
Performance Result

- Dynamic reduction ($R = N$, $K = 1, 2, 4$)
Conclusion

- The overhead of task scheduling in distributed CnC programs is non-negligible.
- We proposed two transformations for overhead reduction:
 - Dependency reduction.
 - Dynamic prescription.
- Our preliminary results obtaining 30% speedup by applying our proposed transformations on Johnson distributed matrix-multiply algorithm.
Ongoing Work

- Currently we are focusing on dynamic prescription.
- Degree of freedom (dof): a property of task scheduling.
 - We have identified several dofs.
 - Manipulator: concentrate the prescription on as few tasks as possible.
 - Balanced: try to have more tasks being in charge of prescription operations.
 - Phased: all tasks of A should finish before any task of B starts.
 - Interleaved: some task of A should finish before starting some task of B.
 - More dofs to discover.
- Policies: combinations of dofs.
 - Policies determine runtime behavior.
 - Policies are applicable program-wide, or a subset of tasks.
References