
Dynamic Task Speculation Support 
Through Divide-and-Merge 

Memory Allocation
Chen Ding, Benjamin O'Halloran, Jacob Bisnett, Joel Kottas and 
Colin Pronovost



Outline
▪ Standard memory management / malloc
▪ Speculative memory management
▪ Givy Allocator & System
▪ Divide & Merge (DM) Malloc
▪ Use cases



Standard Malloc
▪ Modern allocators use size classes / free lists (FIFO stack)
▪ block: memory region used for program data
▪ malloc: get data block
▪ free: program finished with block

▪ Can be a nop
▪ Thread local reserves



Speculative Memory Management
▪ Tasks need to be isolated
▪ Custom malloc required to avoid false conflicts
▪ Partition GAS into per-task specific reserves

▪ Either divide free lists or the VAS itself
▪ Communication generally requires either:

▪ Expensive IPC protocol
▪ Pre-allocated (finite) shared memory 
▪ File-backed shared memory

▪ Security concerns



Givy
▪ ISMM 2016 by Gindraud et. al. for CnC / distributed embedded 

systems
▪ Givy executes dynamic task graphs
▪ Raw C pointers define reference
▪ Interval of VM addresses given to each node in system

▪ Allocations require no network communication
▪ Eager free



DM Malloc
▪ Part of process-based speculative parallelization framework

▪ Page (4KB) granularity will waste physical memory
▪ When speculation begins divide the virtual address space

▪ Noncontiguous, finite regions
▪ Divide free lists of each size class between the number of 

speculative tasks
▪ No communication between tasks



DM Malloc
▪ Once committed, merge the free lists

▪ Only the top of each node’s region will have been modified
▪ Deferred Free

▪ Needed to eliminate communication, there is no shared 
memory used by allocator



Comparison
DM Malloc
▪ Finite memory / no heap 

growth
▪ Speculative, so abort when 

OOM
▪ Design generalizes for 

distributed environment
▪ Current framework is not 

distributed

Givy Allocator
▪ Solves distributed allocation 

problem
▪ No hard limit for per-node 

allocations
▪ Non speculative



Use Cases
▪ Redundant Execution

▪ Faulty or Asymmetric hardware
▪ Simplify implementation of fully decentralized design

▪ Consensus through majority vote, re-try minority voters
▪ ''undo'' and ''redo" operations that may expand the programming 

interface of CnC.
▪ Unsure of parallelism or the exact dependence between tasks
▪ Check and enforce parallelism or dependence after a task is 

completed.


