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High	level	moIvaIon	
•  SoJware	engineering	
•  Hierarchical	understanding		
•  Hierarchical	opImizaIons	
•  Hierarchical	mapping	
•  Reuse	
–  Within	a	single	app	or	from	a	library	
–  CommunicaIng	runImes	

•  Hierarchy	is	not	only	for	computaIon	but	also	hierarchical	
–  DocumentaIon,	development,	tesIng,	debugging,	checkpoint-
conInue,	staIc	&	dynamic	analysis,	staIc	&	dynamic	tuning,	
etc.	
	



No	assumpIon	about	the	
implementaIon	

•  Some	languages	know	about	arrays,	lists,	strings	
•  CnC	knows	about	collecIons,	graphs,	tags	
•  We	have	a	variety	of	different	implementaIons	
of	these	

•  Hierarchical	CnC	will	also	know	about	hierarchy		
•  We	can	have	a	variety	of	very	different	
implementaIon	of	hierarchy	

•  Even	the	runImes	can	be	different	at	different	
places	or	levels	in	the	graph	



Outline	

•  Background	via	an	app	
•  IntroducIon	to	hierarchy	
•  Constraints	and	opImizaIons	



Background	via	an	app	
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Cholesky	CnC	graph	spec	

(C)	

(T)	

(U)	

[C]	

[T]	

[U]	

(computaIon	step)	

[data	item]	



Cholesky	CnC	graph	spec	

(C	iter)	

(T:	iter,	row)	

(U:	iter,	row,	col)	

[C:	iter]	

[T:	iter,	row]	

[U:	iter,	row,	col]	

Consumer	relaIon	

Producer	relaIon	



Cholesky	CnC	graph	spec	

(C	iter)	

(T:	iter,	row)	

(U:	iter,	row,	col)	

[C:	iter]	

[T:	iter,	row]	

[U:	iter,	row,	col]	

Input:	
Produced	by	env	

Output:	
Consumed	by	env	



Cholesky	CnC	graph	spec	

(C	iter)	

(T:	iter,	row)	

(U:	iter,	row,	col)	

[C:	iter]	

<I:	iter>	

<IR:	iter,	row>	

[T:	iter,	row]	

[U:	iter,	row,	col]	

<IR:	iter,	row,	col>	

<control	tags>	
Which	instances	will	execute	



Cholesky	CnC	graph	spec	

(C	iter)	

(T:	iter,	row)	

(U:	iter,	row,	col)	

[C:	iter]	

<I:	iter>	

<IR:	iter,	row>	

[T:	iter,	row]	

[U:	iter,	row,	col]	

<IR:	iter,	row,	col>	

Control	relaIonship	



SemanIcs	of	CnC:	
specifies	a	parIal	order	of	execuIon	

Item	

avail	

step	
controlReady	

step	
dataReady	

tag	
avail	
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SemanIcs	of	CnC:	
specifies	a	parIal	order	of	execuIon	

Item	

avail	

step	
controlReady	

step	
ready	

step	
dataReady	

step	
executed	

tag	
avail	



SemanIcs	of	CnC:	
specifies	a	parIal	order	of	execuIon	

Item	

avail	

step	
controlReady	

step	
ready	

step	
dataReady	

step	
executed	

tag	
avail	

TerminaIon:	
	No	step	is	execuIng	
	All	ready	steps	have	executed	
	All	inputs	have	arrived	

Clean	terminaIon:	
	TerminaIon	
	All	control-ready	steps	have	executed	



IntroducIon	to	hierarchy	



Basic	idea	

•  Every	level	appears	to	be	a	normal	CnC	app		
•  But	now	includes	the	relaIonships	between	
adjacent	levels	



CollecIon	name	

…	
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				name	

	
CollecIon	
name	

This	is	at	a	high	level	
ImplementaIons	can	vary	dramaIcally	

…	

Instance	
tag	 Instance	

tag	
Instance	

tag	

Current	fixed	3	level	hierarchy	

Full	app	



CollecIon	name	

…	

Instance	
tag	 Instance	

tag	
Instance	

tag	

CollecIon	name	

…	

Instance	
tag	 Instance	

tag	
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tag	

General	hierarchy	
looks	like	flat	CnC	at	every	level	

…	

CollecIon		
				name	

CollecIon		
				name	

	
CollecIon	
name	

This	is	at	a	high	level	
ImplementaIons	can	vary	dramaIcally	

…	

Instance	
tag	 Instance	

tag	
Instance	

tag	

-------------	
Collec=on	name	

…	

Instance	
tag	 Instance	

tag	
Instance	

tag	

Full	app	



Types	of	hierarchical	relaIonships	
4	possibiliIes	

–  Applied	to:	
	ComputaIon	/	data	

–  Types	of	decomposiIon:		
Heterogeneous	/	homogeneous	

	
	 Data	 ComputaIon	

Homogeneous	 	
	
	
	
	

	
	
	

Like	
SIMD	

Like	an	
array	

[x:	j,	k]	=	[x:	j’,	k’]	

Special	case:	
				[x:	j]	=	[x:	j,	k]	

Special	case:	
				(foo:	j)	=	(foo:	j,	k)	

(foo:	j,	k)	=	(foo:	j’,	k’)	

SIMD:	Single	instrucIon	/	mulIple	data	
Usually	means	“in	parallel”.		
Here	it	says	nothing	about	parallelism.	



Types	of	hierarchical	relaIonships	
4	possibiliIes	

–  Applied	to:	
	ComputaIon	/	data	

–  Types	of	decomposiIon:		
Heterogeneous	/	homogeneous	

	
	 Data	 ComputaIon	

Homogeneous	 	
	
	
	
	

	
	
	

Heterogeneous	

Like	
MIMD	

Like	
SIMD	

Like	an	
array	

Like	a	
struct	

[x:	j,	k]	=	[x:	j’,	k’]	

Special	case:	
				[x:	j]	=	[x:	j,	k]	

Special	case:	
				(foo:	j)	=	(foo:	j,	k)	

(foo:	j,	k)	=	(foo:	j’,	k’)	

[x:	j]	=	[y:	j],	[z:	j]	 (foo:	j)	=	{graph:	j}	

MIMD:	MulIple	instrucIon	/	mulIple	data	
Usually	means	“in	parallel”.		
Here	it	says	nothing	about	parallelism.	



DecomposiIons	

…	

(C)		

(CT)	

(CTU)	

(U)	

(T)	

disInct	collecIons	
Same	color	=	same	name	=	same	collecIon	

heterogeneous	

heterogeneous	

homogeneous	

homogeneous	



[C]	 [T]	

Cholesky	CnC	graph	spec	

						<I>	

					<IR>	 				[U]	

						<IRC>	

(CTU)	

<singleton>	



[C:	iter]	 [T:	iter]	

Cholesky	CnC	graph	spec	

						<I:	iter>	

					<IR:	iter>	 									[U:	iter]	

						<IRC:	iter>	

This	is	a	homogeneous	decomposiIon	of	(CTU)	
into	children	(CTU:iter).	These	children	all	look	
the	same	for	different	values	of	iter	

(CTU:	iter)	



Cholesky	CnC	graph	spec	

(U:	iter,	row,	col)	

<I:	iter>	

<IR:	iter,	row>	

[T:	iter,	row]	 [U:	iter,	row,	col]	

<IR:	iter,	row,	col>	

(CT:	iter)	

[C:	iter]	

This	is	a	further	(heterogeneous)	decomposiIon	of	(CTU:	iter)	
Into	2	disInct	computaIon	steps	(CT:	iter)	and	(U:	iter,	row,	col)	



Cholesky	CnC	graph	spec	

(C:	iter)	

(T:	iter,	row)	

(U:	iter,	row,	col)	

[C:	iter]	

<I:	iter>	

<IR:	iter,	row>	

[T:	iter,	row]	

[U:	iter,	row,	col]	

<IR:	iter,	row,	col>	

This	is	a	further	(heterogeneous)	decomposiIon	of	(CT:	iter)	
Into	2	disInct	computaIon	steps	(C:	iter)	and	(T:	iter,	row)	



Item	

avail	

step	
controlReady	

step	
ready	

step	
dataReady	

step	
executed	

tag	
avail	

Clean	terminaIon:	
	TerminaIon	
	All	control-ready	steps	have	executed	

SemanIcs	of	flat	CnC:	
	TerminaIon:	
	No	step	is	execuIng	
	All	ready	steps	have	executed	
	All	inputs	have	arrived	



SemanIcs	of	hierarchical	CnC:	
specifies	a	parIal	order	of	execuIon	
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Lower	level	graph	

Step	
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Lower	level	graph	

Step	
	

terminated	



SemanIcs	of	hierarchical	CnC:	
specifies	a	parIal	order	of	execuIon	
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SemanIcs	of	hierarchical	CnC:	
specifies	a	parIal	order	of	execuIon	
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Hierarchical	nodes		
that	are	not	step-like	

Like	a	sub-graph	of	a	larger	graph	or	like	an	app	
	

•  Doesn’t	need	to	live	by	the	in/compute/out	rule	
– Most	of	our	current	apps	are	step-like	

•  The	Intel	system	supports	non-step	like	nodes	as	
subgraphs	of	a	larger	graph		
–  Examples	reducIons,	joins	



Reuse	
•  We	want	to	reuse	hierarchical	nodes	
– MulIple	Imes	within	the	same	app	or	from	libraries	
–  Step-like	or	graph-like	
–  Either	case	innards	can	be	public	or	private	

•  If	public		
– As	if	it	were	built	for	the	app	itself	
–  Can	analyze	and	opImized	wrt	its	posiIon	

•  If	private	
–  It’s	a	black	box		
–  Can	opImize	it	as	a	whole	(move	or	delete)	



Constraints	and	opImizaIons	



Constraints	on	hierarchy	
•  Every	level	of	a	hierarchical	CnC	spec	is	a	legal	
CnC	spec:	
–  Steps	at	every	level	must	be	step-like:	

•  Can	get	all	their	input,	compute,	put	their	output	and	
terminate	

– Data	items	at	every	level	must	item-like	
•  Are	dynamic	single-assignment	

•  The	meaning	of	the	parent	node	is	idenIcal	to	
the	meaning	of	the	children	taken	as	a	whole	

•  ImplicaIon:		
–  Parent/child	relaIonship	of	steps	and	the	parent/child	
relaIonship	of	items	must	be	consistently	determined	



One	example	of	an	opImizaIon:	
Interchange	

Computa=ons	

•  4	parent/child	combinaIons		
–  SIMD	of	SIMD		
–  MIMD	of	MIMD		
–  SIMD	of	MIMD		
–  MIMD	of	SIMD		

Interchange	is	legal		
if	the	result	is	step-like	at	both	levels	

	

•  4	parent/child	combinaIons	
–  Struct	of	structs	
–  Struct	of	arrays	
–  Array	of	structs		
–  Array	of	arrays	

	

Interchange	is	legal		
if	the	result	DSA	at	both	levels	

Data	



Conclusions	

•  Hierarchy	is	useful	for	the	domain	expert	and	
for	the	tuning	expert	
•  Hierarchy	is	not	only	for	computaIon	but	also	
hierarchical	
– Discussed:	StaIc	&	dynamic	analysis,	staIc	&	
dynamic	tuning,	etc.	

– But	also:	DocumentaIon,	development,	tesIng,	
debugging,	checkpoint-conInue,		
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