
Hierarchical	CnC		

Kath	Knobe	



Thanks	to	…	

•  Zoran	Budimlić	–	Rice	
•  Nick	Vrvilo	–	Rice	
•  Frank	Schlimbach	–	Intel	
•  Milind	Kulkarni	–	Purdue	
•  Gary	Delp	–	Mayo	Clinic	



High	level	moIvaIon	
•  SoJware	engineering	
•  Hierarchical	understanding		
•  Hierarchical	opImizaIons	
•  Hierarchical	mapping	
•  Reuse	
–  Within	a	single	app	or	from	a	library	
–  CommunicaIng	runImes	

•  Hierarchy	is	not	only	for	computaIon	but	also	hierarchical	
–  DocumentaIon,	development,	tesIng,	debugging,	checkpoint-
conInue,	staIc	&	dynamic	analysis,	staIc	&	dynamic	tuning,	
etc.	
	



No	assumpIon	about	the	
implementaIon	

•  Some	languages	know	about	arrays,	lists,	strings	
•  CnC	knows	about	collecIons,	graphs,	tags	
•  We	have	a	variety	of	different	implementaIons	
of	these	

•  Hierarchical	CnC	will	also	know	about	hierarchy		
•  We	can	have	a	variety	of	very	different	
implementaIon	of	hierarchy	

•  Even	the	runImes	can	be	different	at	different	
places	or	levels	in	the	graph	



Outline	

•  Background	via	an	app	
•  IntroducIon	to	hierarchy	
•  Constraints	and	opImizaIons	



Background	via	an	app	



Cholesky	factorizaIon	

7	

Cholesky	

Trisolve	 Update	

	
	



Cholesky	factorizaIon	

8	

Cholesky	

Trisolve	 Update	

	
	



Cholesky	factorizaIon	

9	

Cholesky	

Trisolve	 Update	

	
	



Cholesky	factorizaIon	

10	

Cholesky	

Trisolve	 Update	

	
	



Cholesky	

Trisolve	 Update	

	
	

Cholesky	factorizaIon	

11	

Cholesky	

Trisolve	 Update	

	
	



Cholesky	factorizaIon	

12	

Cholesky	

Trisolve		 Update		 	
	



Cholesky	CnC	graph	spec	

(C)	

(T)	

(U)	

[C]	

[T]	

[U]	

(computaIon	step)	

[data	item]	



Cholesky	CnC	graph	spec	

(C	iter)	

(T:	iter,	row)	

(U:	iter,	row,	col)	

[C:	iter]	

[T:	iter,	row]	

[U:	iter,	row,	col]	

Consumer	relaIon	

Producer	relaIon	



Cholesky	CnC	graph	spec	

(C	iter)	

(T:	iter,	row)	

(U:	iter,	row,	col)	

[C:	iter]	

[T:	iter,	row]	

[U:	iter,	row,	col]	

Input:	
Produced	by	env	

Output:	
Consumed	by	env	



Cholesky	CnC	graph	spec	

(C	iter)	

(T:	iter,	row)	

(U:	iter,	row,	col)	

[C:	iter]	

<I:	iter>	

<IR:	iter,	row>	

[T:	iter,	row]	

[U:	iter,	row,	col]	

<IR:	iter,	row,	col>	

<control	tags>	
Which	instances	will	execute	



Cholesky	CnC	graph	spec	

(C	iter)	

(T:	iter,	row)	

(U:	iter,	row,	col)	

[C:	iter]	

<I:	iter>	

<IR:	iter,	row>	

[T:	iter,	row]	

[U:	iter,	row,	col]	

<IR:	iter,	row,	col>	

Control	relaIonship	



SemanIcs	of	CnC:	
specifies	a	parIal	order	of	execuIon	

Item	

avail	

step	
controlReady	

step	
dataReady	

tag	
avail	



SemanIcs	of	CnC:	
specifies	a	parIal	order	of	execuIon	

Item	

avail	

step	
controlReady	

step	
ready	

step	
dataReady	

tag	
avail	



SemanIcs	of	CnC:	
specifies	a	parIal	order	of	execuIon	

Item	

avail	

step	
controlReady	

step	
ready	

step	
dataReady	

tag	
avail	



SemanIcs	of	CnC:	
specifies	a	parIal	order	of	execuIon	

Item	

avail	

step	
controlReady	

step	
ready	

step	
dataReady	

step	
executed	

tag	
avail	



SemanIcs	of	CnC:	
specifies	a	parIal	order	of	execuIon	

Item	

avail	

step	
controlReady	

step	
ready	

step	
dataReady	

step	
executed	

tag	
avail	

TerminaIon:	
	No	step	is	execuIng	
	All	ready	steps	have	executed	
	All	inputs	have	arrived	

Clean	terminaIon:	
	TerminaIon	
	All	control-ready	steps	have	executed	



IntroducIon	to	hierarchy	



Basic	idea	

•  Every	level	appears	to	be	a	normal	CnC	app		
•  But	now	includes	the	relaIonships	between	
adjacent	levels	



CollecIon	name	

…	

Instance	
tag	 Instance	

tag	
Instance	

tag	

CollecIon	name	

…	

Instance	
tag	 Instance	

tag	
Instance	

tag	

…	

CollecIon		
				name	

CollecIon		
				name	

	
CollecIon	
name	

This	is	at	a	high	level	
ImplementaIons	can	vary	dramaIcally	

…	

Instance	
tag	 Instance	

tag	
Instance	

tag	

Current	fixed	3	level	hierarchy	

Full	app	



CollecIon	name	

…	

Instance	
tag	 Instance	

tag	
Instance	

tag	

CollecIon	name	

…	

Instance	
tag	 Instance	

tag	
Instance	

tag	

General	hierarchy	
looks	like	flat	CnC	at	every	level	

…	

CollecIon		
				name	

CollecIon		
				name	

	
CollecIon	
name	

This	is	at	a	high	level	
ImplementaIons	can	vary	dramaIcally	

…	

Instance	
tag	 Instance	

tag	
Instance	

tag	

-------------	
Collec=on	name	

…	

Instance	
tag	 Instance	

tag	
Instance	

tag	

Full	app	



Types	of	hierarchical	relaIonships	
4	possibiliIes	

–  Applied	to:	
	ComputaIon	/	data	

–  Types	of	decomposiIon:		
Heterogeneous	/	homogeneous	

	
	 Data	 ComputaIon	

Homogeneous	 	
	
	
	
	

	
	
	

Like	
SIMD	

Like	an	
array	

[x:	j,	k]	=	[x:	j’,	k’]	

Special	case:	
				[x:	j]	=	[x:	j,	k]	

Special	case:	
				(foo:	j)	=	(foo:	j,	k)	

(foo:	j,	k)	=	(foo:	j’,	k’)	

SIMD:	Single	instrucIon	/	mulIple	data	
Usually	means	“in	parallel”.		
Here	it	says	nothing	about	parallelism.	



Types	of	hierarchical	relaIonships	
4	possibiliIes	

–  Applied	to:	
	ComputaIon	/	data	

–  Types	of	decomposiIon:		
Heterogeneous	/	homogeneous	

	
	 Data	 ComputaIon	

Homogeneous	 	
	
	
	
	

	
	
	

Heterogeneous	

Like	
MIMD	

Like	
SIMD	

Like	an	
array	

Like	a	
struct	

[x:	j,	k]	=	[x:	j’,	k’]	

Special	case:	
				[x:	j]	=	[x:	j,	k]	

Special	case:	
				(foo:	j)	=	(foo:	j,	k)	

(foo:	j,	k)	=	(foo:	j’,	k’)	

[x:	j]	=	[y:	j],	[z:	j]	 (foo:	j)	=	{graph:	j}	

MIMD:	MulIple	instrucIon	/	mulIple	data	
Usually	means	“in	parallel”.		
Here	it	says	nothing	about	parallelism.	



DecomposiIons	

…	

(C)		

(CT)	

(CTU)	

(U)	

(T)	

disInct	collecIons	
Same	color	=	same	name	=	same	collecIon	

heterogeneous	

heterogeneous	

homogeneous	

homogeneous	



[C]	 [T]	

Cholesky	CnC	graph	spec	

						<I>	

					<IR>	 				[U]	

						<IRC>	

(CTU)	

<singleton>	



[C:	iter]	 [T:	iter]	

Cholesky	CnC	graph	spec	

						<I:	iter>	

					<IR:	iter>	 									[U:	iter]	

						<IRC:	iter>	

This	is	a	homogeneous	decomposiIon	of	(CTU)	
into	children	(CTU:iter).	These	children	all	look	
the	same	for	different	values	of	iter	

(CTU:	iter)	



Cholesky	CnC	graph	spec	

(U:	iter,	row,	col)	

<I:	iter>	

<IR:	iter,	row>	

[T:	iter,	row]	 [U:	iter,	row,	col]	

<IR:	iter,	row,	col>	

(CT:	iter)	

[C:	iter]	

This	is	a	further	(heterogeneous)	decomposiIon	of	(CTU:	iter)	
Into	2	disInct	computaIon	steps	(CT:	iter)	and	(U:	iter,	row,	col)	



Cholesky	CnC	graph	spec	

(C:	iter)	

(T:	iter,	row)	

(U:	iter,	row,	col)	

[C:	iter]	

<I:	iter>	

<IR:	iter,	row>	

[T:	iter,	row]	

[U:	iter,	row,	col]	

<IR:	iter,	row,	col>	

This	is	a	further	(heterogeneous)	decomposiIon	of	(CT:	iter)	
Into	2	disInct	computaIon	steps	(C:	iter)	and	(T:	iter,	row)	



Item	

avail	

step	
controlReady	

step	
ready	

step	
dataReady	

step	
executed	

tag	
avail	

Clean	terminaIon:	
	TerminaIon	
	All	control-ready	steps	have	executed	

SemanIcs	of	flat	CnC:	
	TerminaIon:	
	No	step	is	execuIng	
	All	ready	steps	have	executed	
	All	inputs	have	arrived	



SemanIcs	of	hierarchical	CnC:	
specifies	a	parIal	order	of	execuIon	

Item	

avail	

step	
controlReady	

step	
ready	

step	
dataReady	

step	
executed	

tag	
avail	

TerminaIon:	
	No	step	is	execuIng	
	All	ready	steps	have	executed	
	All	inputs	have	arrived	

Clean	terminaIon:	
	TerminaIon	
	All	control-ready	steps	have	executed	

Lower	level	graph	

Step	
	



SemanIcs	of	hierarchical	CnC:	
specifies	a	parIal	order	of	execuIon	

Item	

avail	

step	
controlReady	

step	
ready	

step	
dataReady	

step	
executed	

tag	
avail	

TerminaIon:	
	No	step	is	execuIng	
	All	ready	steps	have	executed	
	All	inputs	have	arrived	

Clean	terminaIon:	
	TerminaIon	
	All	control-ready	steps	have	executed	

Lower	level	graph	

Step	
	

terminated	



SemanIcs	of	hierarchical	CnC:	
specifies	a	parIal	order	of	execuIon	

Item	

avail	

step	
controlReady	

step	
ready	

step	
dataReady	

step	
executed	

tag	
avail	

TerminaIon:	
	No	step	is	execuIng	
	All	ready	steps	have	executed	
	All	inputs	have	arrived	

Clean	terminaIon:	
	TerminaIon	
	All	control-ready	steps	have	executed	

Lower	level	graph	

Step	
	

terminated	

executed	



SemanIcs	of	hierarchical	CnC:	
specifies	a	parIal	order	of	execuIon	

Item	

avail	

step	
controlReady	

step	
ready	

step	
dataReady	

step	
executed	

tag	
avail	

TerminaIon:	
	No	step	is	execuIng	
	All	ready	steps	have	executed	
	All	inputs	have	arrived	

Clean	terminaIon:	
	TerminaIon	
	All	control-ready	steps	have	executed	

Lower	level	graph	

Step	
	

Item	

avail	

terminated	

executed	



SemanIcs	of	hierarchical	CnC:	
specifies	a	parIal	order	of	execuIon	

Item	

avail	

step	
controlReady	

step	
ready	

step	
dataReady	

step	
executed	

tag	
avail	

TerminaIon:	
	No	step	is	execuIng	
	All	ready	steps	have	executed	
	All	inputs	have	arrived	

Clean	terminaIon:	
	TerminaIon	
	All	control-ready	steps	have	executed	

Lower	level	graph	

Step	
	

Item	

avail	

tag	
avail	

terminated	

executed	



Hierarchical	nodes		
that	are	not	step-like	

Like	a	sub-graph	of	a	larger	graph	or	like	an	app	
	

•  Doesn’t	need	to	live	by	the	in/compute/out	rule	
– Most	of	our	current	apps	are	step-like	

•  The	Intel	system	supports	non-step	like	nodes	as	
subgraphs	of	a	larger	graph		
–  Examples	reducIons,	joins	



Reuse	
•  We	want	to	reuse	hierarchical	nodes	
– MulIple	Imes	within	the	same	app	or	from	libraries	
–  Step-like	or	graph-like	
–  Either	case	innards	can	be	public	or	private	

•  If	public		
– As	if	it	were	built	for	the	app	itself	
–  Can	analyze	and	opImized	wrt	its	posiIon	

•  If	private	
–  It’s	a	black	box		
–  Can	opImize	it	as	a	whole	(move	or	delete)	



Constraints	and	opImizaIons	



Constraints	on	hierarchy	
•  Every	level	of	a	hierarchical	CnC	spec	is	a	legal	
CnC	spec:	
–  Steps	at	every	level	must	be	step-like:	

•  Can	get	all	their	input,	compute,	put	their	output	and	
terminate	

– Data	items	at	every	level	must	item-like	
•  Are	dynamic	single-assignment	

•  The	meaning	of	the	parent	node	is	idenIcal	to	
the	meaning	of	the	children	taken	as	a	whole	

•  ImplicaIon:		
–  Parent/child	relaIonship	of	steps	and	the	parent/child	
relaIonship	of	items	must	be	consistently	determined	



One	example	of	an	opImizaIon:	
Interchange	

Computa=ons	

•  4	parent/child	combinaIons		
–  SIMD	of	SIMD		
–  MIMD	of	MIMD		
–  SIMD	of	MIMD		
–  MIMD	of	SIMD		

Interchange	is	legal		
if	the	result	is	step-like	at	both	levels	

	

•  4	parent/child	combinaIons	
–  Struct	of	structs	
–  Struct	of	arrays	
–  Array	of	structs		
–  Array	of	arrays	

	

Interchange	is	legal		
if	the	result	DSA	at	both	levels	

Data	



Conclusions	

•  Hierarchy	is	useful	for	the	domain	expert	and	
for	the	tuning	expert	
•  Hierarchy	is	not	only	for	computaIon	but	also	
hierarchical	
– Discussed:	StaIc	&	dynamic	analysis,	staIc	&	
dynamic	tuning,	etc.	

– But	also:	DocumentaIon,	development,	tesIng,	
debugging,	checkpoint-conInue,		

	
	



End	

Thanks	to	…	
Zoran	Budimlić	–	Rice	
Nick	Vrvilo	–	Rice	
Frank	Schlimbach	–	Intel	
Milind	Kulkarni	–	Purdue	
Gary	Delp	–	Mayo	Clinic	
	


