Hierarchical CnC

Kath Knobe

Thanks to ...

Zoran Budimli¢ — Rice
Nick Vrvilo — Rice

Frank Schlimbach — Intel
Milind Kulkarni — Purdue
Gary Delp — Mayo Clinic

High level motivation

Software engineering
Hierarchical understanding
Hierarchical optimizations
Hierarchical mapping

Reuse

— Within a single app or from a library

— Communicating runtimes

Hierarchy is not only for computation but also hierarchical

— Documentation, development, testing, debugging, checkpoint-
continue, static & dynamic analysis, static & dynamic tuning,
etc.

OB

CnC

No assumption about the
implementation

Some languages know about arrays, lists, strings
CnC knows about collections, graphs, tags

We have a variety of different implementations
of these

Hierarchical CnC will also know about hierarchy

We can have a variety of very different
implementation of hierarchy

Even the runtimes can be different at different

places or levels in the graph
3,
40

CnC

Outline

* Background via an app
* Introduction to hierarchy
* Constraints and optimizations

Background via an app

Cholesky factorization

Trisolve Update

Cholesky factorization

Update

Cholesky factorization

Trisolve Update

Cholesky factorization

Trisolve Update

N |

N

/|

Cholesky factorization

Trisolve Update

CAICEICaIC
CAICaIct
e

Cholesky factorization

Trisolve Update

(C)

Cholesky CnC graph spec

[C]

[[data item]

[T]

u:\(ﬁjtation step) }
O

[U]

Cholesky CnC graph spec

p
(Citer) Producer relation }

V Consumer relation }
[T: iter, row] ——)QU: iter, row, col)

[U: iter, row, col]

Cholesky CnC graph spec

(Citer)

Input:
Produced by env

(T: iter, row)

[T: iter, row] ——)QU: iter, row, col)

~“a

-

Output:
Consumed by env

[U: iter, row, col]

Cholesky CnC graph spec

%[<control tags> }
“\

Which instances will execute
<<IR: iter, row>>

(T: iter, row)

(Citer)

'

<IR iter, row, col>

[T: iter, row] ——)QU: iter, row, COD\
“\
\a
[U: iter, row, col]

Cholesky CnC graph spec

(Citer)

(T: iter, row)

ﬂ . .
Control relationship
<<IR: iter, row>>

~“a

<IR: iter, row, c@
T
1
1

[T: iter, row]

~“a

——)QU: iter, row, COD\

-

[U: iter, row, col]

Semantics of CnC:
specifies a partial order of execution

Semantics of CnC:
specifies a partial order of execution

Semantics of CnC:
specifies a partial order of execution

Semantics of CnC:
specifies a partial order of execution

Semantics of CnC:
specifies a partial order of execution

Termination:
No step is executing
All ready steps have executed
All inputs have arrived

Clean termination:
Termination
All control-ready steps have executed

Introduction to hierarchy

Basic idea

* Every level appears to be a normal CnC app

* But now includes the relationships between
adjacent levels

Current fixed 3 level hierarchy

This is at a high level
Implementations can vary dramatically Full app

Collection

name

Collection
Instance

tag

nName

Instance
tag

Collection
name

Instance
Instance

ta
tag & Instance
tag

Instance Instance

t
tag a8 Instance

tag

Instance
tag

General hierarchy
looks like flat CnC at every level

This is at a high level
Implementations can vary dramatically Full app

Collection

name

Collection
Instance

tag

nName

Instance
tag

Collection
name

Instance
Instance

ta
___tag & Instance
tag

Collection name Instance Instance

tag tag

Instance
Instance tag

tag

Instance
tag

Instance

tag
Instance

L Ve 1

Types of hierarchical relationships

4 possibilities
— Applied to:
Computation / data

SIMD: Single instruction / multiple data
Usually means “in parallel”.
Here it says nothing about parallelism.

— Types of decomposition:

Heterogeneous / homogeneous

ey

Data

Homogeneﬁ\

[x:], k] =[x:}, k']

Special case:
[x: j] = [x:], k]

Computation
(foo: j, k) = (foo: j’, k’)/\v

Special case:
(foo:j) = (foo: j, k)

Types of hierarchical relationships

4 possibilities MIMD: Multiple instruction / multiple data

Usually means “in paralle
Here it says nothing about parallelism.

— Applied to:
Computation / data
— Types of decomposition:

Heterogeneous / homogeneous

III
.

Computation

Homogeneﬁ\ [x: j, k] = [x: ', K]

Special case:

I ‘ [x: j]=[x:], K]

(foo: j, k) = (foo: j’, k')

Special case:
(foo:j) = (foo: j, k)

B
Heterogeneous [x: 1 = Iy:il, [z:]

(foo: j) = {graph: j}

Decompositions

heterogeneous

(CT) I V) g

%{ homogeneous]

heterogeneous

homogeneous

distinct collections

Same color = same name = same collection Z\ PN
A

Cholesky CnC graph spec

“\

e
1
1

“w -
< <IR> [U]
~<
<|>

[C] [T]

Cholesky CnC graph spec

“\

< <IRC: iter> >

\
< <IR: iter>
<l:iter>

(CTU iter) [U iter]

[C: iter] [T: iter]

This is a homogeneous decomposition of (CTU)
into children (CTU:iter). These children all look
the same for different values of iter

Cholesky CnC graph spec

i

[C: iter]
<IR: iter, row, col>
"
<IR iter, row> (CT: iter) —
[T: iter, row] (U: iter, row, col)> .

[U: iter, row, col]

= y

This is a further (heterogeneous) decomposition of (CTU: iter)
Into 2 distinct computation steps (CT: iter) and (U: iter, row, col)

Cholesky CnC graph spec

“\

<<IR: iter, row>>
(T: iter, row)

<IR iter, row, col>

[T: iter, row]

“a

——)QU iter, row, co>\

»

[U: iter, row, col]

This is a further (heterogeneous) decomposition of (CT: iter)
Into 2 distinct computation steps (C: iter) and (T: iter, row)

Semantics of flat CnC:

Termination:

No step is executing
25 All ready steps have executed
All inputs have arrived

Clean termination:
Termination
All control-ready steps have executed

Semantics of hierarchical CnC:
specifies a partial order of execution

Termination:

No step is executing
25 All ready steps have executed
All inputs have arrived

Clean termination:
Termination
All control-ready steps have executed

Lower level graph

Semantics of hierarchical CnC:
specifies a partial order of execution

Termination:

No step is executing
25 All ready steps have executed
All inputs have arrived

Clean termination:
Termination
All control-ready steps have executed

Lower level graph
terminated

Semantics of hierarchical CnC:
specifies a partial order of execution

Termination:

No step is executing
25 All ready steps have executed
All inputs have arrived

Clean termination:
Termination
All control-ready steps have executed

Lower level graph
terminated

Semantics of hierarchical CnC:
specifies a partial order of execution

Termination:

No step is executing
25 All ready steps have executed
All inputs have arrived

Clean termination:
Termination
All control-ready steps have executed

Lower level graph
terminated

Semantics of hierarchical CnC:
specifies a partial order of execution

Termination:

No step is executing
25 All ready steps have executed
All inputs have arrived

Clean termination:
Termination
All control-ready steps have executed

Lower level graph
terminated

Hierarchical nodes
that are not step-like

Like a sub-graph of a larger graph or like an app

* Doesn’t need to live by the in/compute/out rule
— Most of our current apps are step-like

* The Intel system supports non-step like nodes as
subgraphs of a larger graph

— Examples reductions, joins

Reuse

* We want to reuse hierarchical nodes
— Multiple times within the same app or from libraries
— Step-like or graph-like
— Either case innards can be public or private
* If public
— As if it were built for the app itself
— Can analyze and optimized wrt its position
* If private
— It’s a black box
— Can optimize it as a whole (move or delete)

Constraints and optimizations

Constraints on hierarchy

* Every level of a hierarchical CnC spec is a legal
CnC spec:

— Steps at every level must be step-like:

* Can get all their input, compute, put their output and
terminate

— Data items at every level must item-like
* Are dynamic single-assignment
* The meaning of the parent node is identical to
the meaning of the children taken as a whole

* Implication:

— Parent/child relationship of steps and the parent/child
relationship of items must be consistently determined

One example of an optimization:
Interchange

Computations Data

* 4 parent/child combinations * 4 parent/child combinations

— SIMD of SIMD — Struct of structs
— MIMD of MIMD — Struct of arrays
_ SIMD of MIMD — Array of structs
— MIMD of SIMD — Array of arrays
Interchange is legal Interchange is legal

if the result is step-like at both levels if the result DSA at both levels

OB

CnC

Conclusions

* Hierarchy is useful for the domain expert and
for the tuning expert

* Hierarchy is not only for computation but also
hierarchical

— Discussed: Static & dynamic analysis, static &
dynamic tuning, etc.

— But also: Documentation, development, testing,
debugging, checkpoint-continue,

OB

CnC

End

Thanks to ...

Zoran Budimli¢ — Rice
Nick Vrvilo — Rice

Frank Schlimbach — Intel
Milind Kulkarni — Purdue
Gary Delp — Mayo Clinic

